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The theory of synchronization studies the behavior of Interconnected systems 
of objects. In its simplest case the problem Is to ascertaln the condltlons 
for, the existence and the stability of periodic states. The general state- 

ment of the pl,oblem, and also numerous examples of the appearance of syn- 
chronization ln nature and technology are given in the paper by Blekhms,n 
111. The problem of Internal synchronization of a system of dynamic objects 
under the action of weak linear couplings was considered by us In paper [2], 

It Is assumed below that the motion of an Isolated object Is described by 
a system of differential equations which 1s close to a Llapunov system [33. 
Consequently, In Isolated objects for the generating approxlmatlon we realize, 
generally speaking, a nonlsochronous periodic state whose period varies In 
some flnlte or Infinite range depending upon a certain parameter associated 
in some way or other with the initial conditions. In order to have the pos- 
sibility of adjusting the object frequency by means of that of the external 
perlodlc perturbation being transmitted to the object bjr a weak couplltIg, In 
this case it Is required only that this frequency be included In the frequency 
range of the Isolated object. For internal syncronlzatlon, I.e. the synchro- 
nization of the self-contained Interconnected system of objects on the whole, 
It 1s required, naturally, that their frequency ranges Intersect. It Is 
apparent that for systems having such objects the tendency Yoward synchronl- 
zatlon Is the strongest. 

The paper consists of four sections. In the first two sections the 
problem 1s considered In the general formulation for the case of nearly Sill- 
lar objects. Existence conditions and the necessary stability conditions 
are derived for the synchronous states. In the last two sections the resuts 
obtained are used to Investigate the synchronization of self-phasing Of sys- 
tems of almost-conservative objects which are located on a supporting body 
of a sufficiently general form. A generalized Integral stability criterion 
IS established for such a system. 

1. In contrast to paper [2], we shall merely write down the equations of 
motion of the Interconnected system of objects with excluded coupling coordl- 

nates. In other words, we shall assume that the coupling coordinates are ln 

the form of known functlons.of the object coordinates. However, for the 

case when r.esonance in the coupling coordinates is absent, this assumption 

Is quite rigorous. 
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Thus, we shall assume that the motion of the Interconnected objects is 

described by the system of equations 

Here m is the total number of objects, while n Is the order of the 

system describing the motion oi‘ each object. In system (1.1) for brevity 

we denote 
x, (Xi) = x, @Ii, . . a, Gli) 

f8i (219 * * -7 x,:,,i7 t, p) = f*i (511, . . .; 5n1; . . . ;%I, . * *, GWII; 6 1”) 

when u = 0 we have m Luxonnected similar Liapunov systems 

dz,; 
- = X8 (2i”) ( s=l,...,n 

dt ) j = 4, . . . , m, 
(1.2) 

admitting of a family ofSperiodic solutions 

G = cps (t + Qi, 4 (1.3) 

of period I” i T(o), depending on m + 1 arbitrary real constants a,,..., 

a., c, and defined In a certain region of the phase space of the system. 

The coupling functions y,, are assumed to be continuous In the variables 

XI, . . . . z. on all the trajectories of i;he generating solution (1.3), their 

period is 2n In the time variable t , and they are analytic with respect 

to the positive parameter u , if p is less than some & . 

The variational equations of the generating system (1.2), 

dLi 
- = PSI (t + ai) Eli + . . . + PSTI (t + ai) Eni dt 

s = f, . . . . n 

i = 1, . . . . m 
(1 A) 

where 

PST (0 = 
ax, [cp (h 41 

arp (t, c) r 
(l-5) 

admit of WI independent T(o)-periodic solutions 

E,I” = CpI’ (t + ai, 4 &l (1 = 1, . ..) M) U-6) 

which are obtained by differentiation of (1.3) with respect of the phases 

a, , . . . , a, in sequence, and admit of m linearly growing solutions 

say) = [ - ‘qdq cp.’ (t + Cti, C) + y8 (t + ai, C) 
I 

&I (I = I, . . . . m) (1.7) 

The latter solution can be obtained If we take the derivative with res- 

pect to c of the generating solution (1.3) as the solution of one of the 

subsystems of (1.4), while the solutions of the other subsystems are set 

equal to zero. The T(c)-periodic functions I/, (t,c) have the form 

(1.8) 

and will be the solution of the Inhomogeneous system 



under the initial conditions 

The system of equations adjoint to (1.4) 

“5,i 

also has m periodic solutions with period 

cSv) = $ (t -f- ai, C) 631 

which, as a consequence of the existence of 

tern (1.9), satisfy condition 
?1 

T’(c) > 

(l z= 1, . . . , Ill) (1.12) 

T(c)-periodic solution of sys- 

(1.13) 

If 0 is a simple roct of Equation 

T (c) = 23~ (1.14) 

then the condition For the existence of a synchronous state In the lntercon- 

netted system of objects [3] is written In the Form 

/‘, ((Lo, . . ., a,,,) =: jj i i fsi tcp (t -j- a,, C), . . ., Cp (t + atnr C); t, 01 X 
s=-1 is1 0 

X qs (t + Ui, C) 631 dt ?= 0 (I =.: 1, , nt) 

or, finally, 

P1 (a, , . . ., a,,,) == 
,t 23 

-. _ 

IF under the condition that the roots of Equation (1.14) 

system (1.15) admits of a solution for which the inequality 

(1.15) 

are not multiple, 

is satisfied, then For sufficiently small )1 to this solution there corre- 

sponds a synchronous motion of the interconnected system with a unique Fre- 

quency, the sequential approximations to which can be sought In the Form of 

a formal series in powers of g 

x,~ (t) = tpy (t + ai, c) -I- pxJ:’ -I- p2 . . . (1.17) 

2, Passing on to the study of the stability of solution (l.6), we set 

up the variational equation of the complete system (l.l), 
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“2 = -j ps,(t + ai)zri +p-j $ q$Qj + pz . . . (;==;- “) (2.1) 
) ,m 

l-=1 r-1 j=l 

where 

(2.2) 

The paranthebes in (2.2) signify that the corresponding quantities are 

calculated for the generating approximation. By using the substitution of 

N.A. Artem'ev [4], we shall seek particular solutions of system (2.1) In the 

form 
zsi = ea(P)t Qi (2.3) 

where T(,, Is the 2n-periodic solution of the system 

r=1 r=l j=l 

Let us confine ourselves to the conslderatilon of the spproxlmatlons to 

the critical roots only and assume o(O) = 0 . Then when p = 0 , system 
(2.4) turns lto the variational equation system of the generating system 

(1.4) which admits of a group of ;fn solutions (1.6) and (1.7) corresponding 

to the critical &-fold zero root. Thus, all the Indices of the elementary 

divisors of the characteristic determinant of the generating system which 

correspond to the zero root, are equal two. Consequently [4], the character- 

istic Indices of system (2.1), which vanish when ~1 = 0 , must necessarily 

be sought In the form of a series In powers of ~4 

a (p) = a$ir -I- a,~ $ a,$/2 + . . . (2.5) 

If the 2n-periodic solution of system (2.;) Is sought In the form of the 

series 
(2.6) 

then the periodic zero approximation has the form 

l]si (I)) = MiCt?y (t -t at, C) (M, = const) (2.7) 

The system.of equations for determining the first approxlmatlon 

+'$ z i JIsr (t + at) 11 !” - Ci,Miqp, (t -f ai, C) 1’2 
I’=, 

(2.5) 

according to (l.g), also admits of a &-periodic solution 

depending on the &I constants M, and Ni. 

For 'I,?) we get Equations 



Without proof let us write out the known identity [3] 

i y &ljq&’ (f _+ ai, c) +s (t f- al, c) dt = 2 (2.11) 
s, a=1 0 I 

and In correspondence with (1.13) let us Introduce the following notation 

Then, the conditions for the existence of a %-periodic solution of sys- 

tem (2.10) will take the form 

(1 =-_ 1, . . . . m) 
4n"k. 

x = ‘I2 d?F)x ) (2.13) 

The condition for the solution of system (2.13) to be nontrivial Is 

8PI /aal--x.. .8Pl/aa, 

A(x)= . . . . . . . . . . . . . . . =O ( 2.14) 
aP,/aal .aP,/i3a,--x 

Obviously, for the considered synchronous state to be stable It Is neces- 

sary that all the roots of Equation (2.14) be real and satisfy condition 

(2.15) 

The necessary and sufficient stability conditions may be obtained after 

computing the second approximations a2 to the characteristic Indices, and 

also the estimates of the characteristic Indices, which, when u = 0 , turn 
Into the pure Imaginary roots of the variational equations of the generating 

system. 

However, without dwelling on these questlons,let us briefly consider the 

case of Internal synchronization under the assumption that the lnterconnec- 

ted system of objects Is self-contained in the whole. In this case the func- 

tions I,, do not depend explicitly on time and relation (1.14) does not 

hold. The conditions for the existence of a synchronous state in the system 

PI (a,, . . ., a,,, 4 = (I = I, . . . . m) (2.16) 

= i ‘r/s’ kp (t -I- a,, c), . . ., cp (t + am, c); O]$ (t + al, c):dt = 0 
s-1 0 

satisfy ihe relations 

PL (a,, . . ., a,, c)=P~(al+a,...,a,+a,c) (2.17) 
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where, generally, c Is an arbitrary constant. These conditions serve to 

determine uniquely the parameter c and the differences of the generating 

phases a,-wn ,..., a,_,--.. As before, the necessary stability condition 

has the form (2.15). However, one of the roots of determinant (2.14) reduces 

to zero because of (2.17), but this does not influence the stability by vir- 

tue of the Andronov-Vltt theorem on the stability of periodic? solutions of 

self-contained systems [ 53 . 

3, Let us consider a system of m nearly similar objects located on a 

supporting body of general shape which in this case will play the role of 

the coupling. The dynamic properties of the supporting body are taken as 

known. *We shall assume that for the two points M and N of the supporting 

body we can uniquely determine a symmetric tensor of the second rank, 

K(M, N) =K(N> H), such that the displacement u of the point M under the 

action of a force Q located at point N wili be 

u = K (M, N) Q (3.1) 

Genera.lly, the objects are almost conservative and are located at points 

M1 (t = I,..., m) of the supporting body. Here, neglecting the influences of 

object rotation Inertia, we shall characterize the action of the f,th object 

on the coupling uniquely by the Inertial force B, 

The equation In Fredholm form of the small oscillations of the coupling Is 

(3.2) 

where U(M, t) Is the displacement of the point M of the supporting body, 

c(N) Is the mass of a unlt volume, R Is the density of the dissipation 

force, r(N, t) is the density of the external action on the supporting body, 

which Is &r-periodic In time. The Integration is carried out over the whole 

volume y of the supporting body, and 6(N, M) Is the generalized delta- 

function satisfying condition 

c 1 1 if 
6 (IV, M) dVN = ” 

‘V E : 

6) if M,s 

The motion of nearly similar objects in a moving coordinate system which 

Is rigidly connected to some small neighborhood of the point of fastening, 

will be characterized by the relative generalized coordinates qlr (s=l, . .,n). 

By definition, the kinetic energy of the tth object will be 

= Toi (qi, qi’) + 
au (illi, t) CfS (qJ 

at 7 
+; lni y;;* t, )’ (3.3) 
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where qi (qi) is the radius vector of the m%ss 

with number t In the moving coordinate System 

N N 

element or+ of the object 

(34 
17. 

Obviously, m, is the total mass of the 5th obgect, B,(p,j ia the vec- 

torial static moment of the obfect relative to the point of faastening, and 

TO. (a, ,g,') is the relative kinetic energy, being EL uniform, positive-definite 

wadratio form in the generalized veJoCltles q,r'. By assuming that the 

Potential energy of the object depends only on the relative generalized 

coordinates, 
G = R (!&I (3.5) 

we get an expression for the force with which the object acts on the support- 

ing body 
c1aSi ((Ii) ~_ 

dt2 
(3.6) 

Equation (3.2) of sm%?l oscillations of the supporting body 2s rewritten 

8S m 

u (M, t) = 2 K (M, Mi) Si” (aj) -I- (3.7) 
i=l 

Furthermore, we shall assume that the influence tensor ot the Supporting 

body can be represented as a bilinear expansion 

where X, are the eigenvalnes and B,(M) are the vectorial e~~e~~~tjons 

of the body, sstisfyfng the orthogon%Llty and normality conditions 

$ [p(N) + i 7ni6 (N, Mi)l0j (N)*Ol (N) dVN =3 Qjl (i, 1 = 3, 2, *,. , cm) (3.9) 
(J:t i=l 

Ue shall Seek 8 solution of Equation f3.1) in the form of a series 

u (M, t) =I i ej (M) r+(t) (3.10) 
j-1 

Let US introduce the following assumption on the nature of the force dam- 

ping the oscillations of the supporting body 

I 
Bj (H)*R&E = @hjUj f3.q 

ct, 

where @ is a positive constant. Xn a specific sense this hypothesis 

assume* the proportioality of the internal resiSt5nCe force to the rate of 

change of the resisting force, and In the particular case of the ordinary 



girder, degenerates to the well-known Volgt hypothesis. For a purely quali- 

tative estimate of the influence of! the resistence force, such an aSSumptiOn 

is completely acceptable; all the more so since the coefficient s , in 

what follows, will be assumed to be a quantity of the order of the small 

coupling parameter. 

After substituting series (3.10) into Equation (3.7) and transforming 

With due regard to (3.8), (3.9) and (3.11), we arrive at the infinite system 

u;* f Pi++ f J+jUj f itij (Mj)*Si"(qi) + fj (t) = 0 (i= 1, 2, . ..) (3.12) 

Here 

i=l 

fj (t) = \ f+ (~) f w, w5v (3.13) 
WI 

The Lagrange equations for the motions of the objects, set up by theusual 
methods with due regard to the relations 

a dS, (Pi) _ aSi (qi) d asi a dSf trrJ 
7----~~ 
aqsi & 

‘A_=_- 
at dtsi aqsi dt 

(3.14) 

have the form 
d aqi ki9 q;) ar”i (Ui, qi’) ani (4i) 

Z aqsi - aqsl +---- 
aq,i 

+ 

+ ; @j(f~f) ayi) ui” = Q*i (qi, q;> (f: ‘1:;:: : ;) (3.15) 
j=i 

and, the generalized forces Q,i , characterizing the Inflow and loss of ener- 

gy, by virtue of the original assumption that the object8 are nearly conser- 

vative, are assumed to be quantities of the order of the small coupling para- 

meter. 

Let us introduce the new canonic variables qsi and 

psi = dT0i (qf9 qi')facl,i' 

and the Hamiltonian function of the object Hi (qt, pi). Here, by virtue of 

the fact that the objects are nearly similar 

Hi (qi, pi> = H(qi, pi) -1 AH (qt, Pi), Si (qi) = S(qi) f Asp (3-16) 

Qlii(qit qi-1 = Qa (qt, qi) + A& (a qi-1 

In the latter relations the second terms are assumed to be quahtltles of 

the order of the small coupling parameter relative to the first. Finally, 

the equations of motion of the Interconnected system of objects, with an 

accuracy up to a quantity of the first order of smallness inclusively, have 

the form 

. amf, pi) aL% (Pi, Pi) 
qui = 

%i + ( dp,i ) (f Z :I:::::) (3.17) 
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In (3.17) the terms in parantheses are assumed to be small and, moreover, 

the group of conservative terms, reflecting the action of the coupling on 
the object, is small by virtue of the assumption that the coupling is weak. 

4. In the generating approximation we have m uncoupled similar self- 

contained conservative subsystems 

admitting of T(c )-period2c solutions 

QSiO -- QS (d -I-- ai, C ) P ai 0 = Fs (t -17 Ujr Cf (4.2) 

peach oF the subsystems (4.1) admit of an energy integral which for the 

considered solution (4.2) has the form 

n(q, 11) == h (c) (4.3) 

Here the energy constant h is positive and Is an analytic function of 

parameter s (see I35 ) - The generating %-periadfe solution of (4.X) is 

characterized by the relation 

1’ (c) ‘2 2n (4.4) 

If the fwictions I, and w,(t) we %t-periodic solutions of Equation 

?I;* -1" hj??j = fj (4, TVj” + hjt_l?j z S" (flf fj= 1, a,,..) (4.5) 

then fop the oscillations of the supporting body in the generating approxi- 

It is clear th3.t we shoulo’ assume the existence of the 

(k is an integer) and by the same token we should exclude 

the case of resonance in any of the normal coordinates of 

body. The variational equations of the generating system 

odic solutions 

(4.G) 

inequality X,# k 

from consideration 

the suppbrtlng 

have the m peri- 

sb‘ @+ -t ai f C) 6i&, ps (f -I- ai, 4 && (k = i,..., tn) 

with periods of m t The corresponding family of &t-periodic solutions of 

the conjugate system will be 
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According to (1.15) the system of equations for determining the genera- 

ting phases a, ,..., a. , after some manipulations with due regard to-the 

(4.7) 

acquires the form 

pk (a,, . . ., %I, 4 = Q (4 + Q (% 4 -t Rk (a,, . . ., anI, c) = 0 (4.8) 

where 

(k = 1, . ..) m) 

Q (4 = 5 2 Qs (9, 9’) 9s’ dt 
0 s=1 

(Dk (UI;, C) = 12 s’[q (t f ak7 c)].ej t"k) ‘2 tt) dt 
u j=1 

(4.9) 

?X a, m 

Rk (al, . . ., am, c) == 5 2 2 S’[q (t + Uk, C)I’Oj (Mk) ej(Mr)'wj"(t f a,) dt 
0 j=lr=l 

In the case of Internal synchronization, the density of the external 

action on the coupling, i(M, t) = 0 and, as has already been said above, 

Equation (4.4) does not hold. Here the conditions for the existence of a 

synchronous state in the system 

pk (a,, . - . , ‘%,I, C) = Q (C) + RI, (a,, . . ., C&t, c) = 0 (k = f,...,m) (4.10) 

because of (2.18) must be considered as a system of equations In the unknowns 

C, a, - aj,l, . . ., fhl - a,,. The functions 4 and I?~ In (4.10) are deter- 

mined from (4.9); however, here the integration Ys between the limits 0 

and T(c) . Turning to the Investigation of the quantity Rr, we integrate 

the last relation iii (4.9) by parts, after which, taking (4.5) Into account, 

we get 

Rk (al, . . ., all,, c) z- ( _ 2 2 [\vi* (t i_ Ctk)fhjU'j'(tfak)] ‘flj t”k) ’ 
v 

j=;l r=l 

‘;I’ Oj (Mr) ‘Wj’ (t f /. 

From (4.11) It Immediately follows that 

m T(C) UJ 

2 Rk (a,, . . ., anI, 4 = - s 2 
k=l IJ j=l 

If now we sum (4.10) with respect to k 

have Q (c) = 0 

The frequency of the synchronous state, 

generating approximation, is obviously not 

determination of the generating phases 

R:, (a,, . . ., alnr 4 = 0 

4 dt (4.11) 

(~‘:j” + hjuj") Uj”dt = 0 (4.1‘2) 

, then because of (4.12) we shall 

(4.13) 

when couplings appear In the 

shifted. The equations for the 

(k = 1 , . . ..m) (4.14) 
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because of (4.11) have the particular solution 0,' . . . = a,= Q If 

ej (Mk) = ej (M,) b(,j; 
where b$j are some scalar multipliers. 

By setting up the expression for the mean from the period Lagrange func- 

tion of the supporting body In the generating approximation 

T(c) 00 

A (a,, . . ., a,, c) = s 2.l ; (uj’“’ - 3Ljujo’) dt (4.15) 
0 j=l 

It Is easy to verify the equality 

R=-!i k 
aak 

(k = I,..., m) (4.16) 

Turning to a stability Investigation, let us note that the constant k 

has a distinct physical meaning for conservative objects. 

Indeed,of the basis of (2.12), (4.1) and (4.3), 

Thus, for the stability of the obtained synchronous state in the lnter- 

connected self-contained system, It 1s necessary that all the roots of 

Equation 
SA ash ---_... 
t?aP aalaa, 

. . . . . . . . . . . . . . . = 0 (4.18) 

i32A asA 

aal i3a, 
---_ 

* ’ * aaa, 

except one which equals zero, should satisfy condition 

(4.19) 

The reality of the roots of determinant (4.18) Is ensured by Its symmetry. 

In the case of mechanical vibrators [l] the gyration period decreases 

with a growth in the vibrator energy. Consequently dT/dh < 0 and we arrive 

at the minimum condition first formulated by Blekhman and Lavrov 161 and 

then proved by Blekhman [7] conformably to systems of mechanical vlbra- 

tors or their mathematical analogs. This condition Incidentally Is not only 

necessary but also sufficient In the mentioned problem because of the speci- 

fic method of Introducing the small parameter (which was different from the 

method used In the present paper). 
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